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ABSTRACT: Phototriggered release of various cargos, including soluble protein factors and small molecules, has the potential to
correct aberrant biological events by offering spatiotemporal control over local therapeutic levels. However, the poor penetration
depth of light historically limits implementation to subdermal regions, necessitating alternative methods of light delivery to achieve
the full potential of photodynamic therapeutic release. Here, we introduce a strategy exploiting bioluminescence resonance energy
transfer (BRET)−an energy transfer process between light-emitting Nanoluciferase (NLuc) and a photosensitive acceptor
molecule−to drive biomolecule release from hydrogel biomaterials. Through a facile, one-pot, and high-yielding synthesis (60−
70%), we synthesized a heterobifunctional ruthenium cross-linker bearing an aldehyde and an azide (CHO-Ru-N3), a compound
that we demonstrate undergoes predictable exchange of the azide-bearing ligand under blue-green light irradiation (>550 nm).
Following site-specific conjugation to NLuc via sortase-tag enhanced protein ligation (STEPL), the modified protein was covalently
attached to a poly(ethylene glycol) (PEG)-based hydrogel via strain-promoted azide−alkyne cycloaddition (SPAAC). Leveraging
the high photosensitivity of Ru compounds, we demonstrate rapid and equivalent release of epidermal growth factor (EGF) via
either direct illumination or via BRET-based bioluminolysis. As NLuc-originated luminescence can be controlled equivalently
throughout the body, we anticipate that this unique protein release strategy will find use for locally triggered drug delivery following
systemic administration of a small molecule.

Stimuli-responsive biomaterials offer substantial promise in
controlled small molecule and protein therapeutic delivery,

alleviating challenges of systemic drug administration through
suppressed off-targeted interactions, immunoprotection, and
prolonged cargo activity.1 While engineered platforms
responsive to endogenous cues (e.g., pH,2,3 enzyme,4 reactive
oxygen species5,6) are useful for disease-directed delivery, those
that respond to exogenous cues (e.g., light,7 temperature,8

ultrasound,9,10 electromagnetic fields11) can afford user-
defined release; the extent of active therapeutic release from
these systems can be advantageously specified in time and
space.
Light-responsive biomaterials have gained substantial

interest for controlled drug delivery.12 By molecularly fusing
cargo to a stable biomaterial through a photolabile linker,
bioactive therapeutic release can be near-instantaneously and
bioorthogonally triggered via cytocompatible light expo-
sure.13−17 Though such systems have found substantial use
for in vitro study, light’s comparatively poor penetrance
through tissue dramatically limits its in vivo utility; only
optically accessible regions typically <1 cm from the light
source can be manipulated. Ongoing efforts in the community
seek to create materials that respond to low-energy light (e.g.,
visible, infrared) that better penetrates tissue.18−20

Complementing chemical efforts to make increasingly
photoresponsive materials are technological advances in light
delivery infrastructure, in the form of LED scopes, light guides,
and implantable LED devices.21 While these methods have

brought significant advancement toward deploying light-
sensitive technologies in the clinic, they require the develop-
ment of sensitive chemistries alongside invention of new
bioelectronics. An ideal system would eliminate the need for
external illumination altogether, while retaining the powerful
dose timing and magnitude control that light offers.
Seeking to develop a photoresponsive material platform that

could be theoretically controlled anywhere in the body and
without specialized equipment, we sought to employ bio-
luminescence resonance energy transfer (BRET)−an energy
transfer process between a light-emitting luciferase and a
photosensitive acceptor molecule−to drive biomolecule release
from hydrogel biomaterials. Though BRET has not been
previously utilized for material modulation, BRET-based
photocleavage events have been previously reported via a
mechanism termed bioluminolysis for the uncaging of bioactive
molecular probes.22−25 We hypothesized that bioluminolysis
would be a powerful mechanism for chemo-optically triggered
protein release from biomaterials.
Toward creation of self-illuminating photoresponsive

biomaterials, we turned our initial focus toward the develop-
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ment of a heterobifunctional ruthenium polypyridyl complex
to act as the photocleavable cross-linker. Critically, ruthenium
polypyridyl complexes are uniquely highly sensitive to visible
light exposure,26−31 wavelengths that are readily accessed
through bioluminescence. In aqueous environments, photolysis
proceeds through a cytocompatible and radical-free ligand
exchange with water. While photolabile homobifunctional
linkers have been well-explored in the literature,32−35

heterobifunctional linkers−those that can link species in a
defined way and with a cleavage site that can be precisely
engineered−are far less common. Seeking to eventually link
protein to a hydrogel using reductive amination and strain-
promoted azide−alkyne cycloaddition (SPAAC), we targeted a
species bearing both aldehyde (CHO) and azide (N3)
functionalities.
[Ru(2 , 2 ′ - b i p y r i d i n e ) 2 ( 3 - p y r i d i n e a l d ehyde ) (4 -

azidobutyronitrile)][Cl]2 (CHO-Ru-N3) was synthesized by
multiple steps in one reaction, followed by purification via
silica column chromatography (Scheme 1, Figure S1−S2). In
brief, Ru(2,2′-bipyridine)2Cl2 was prereacted in methanol with
silver hexafluorophosphate (AgPF6), following which 3-
pyridinealdehyde was added and coordinated over 1 h while

heating. Subsequently, another equivalent of AgPF6 was added,
along with 4-azidobutyronitrile, which was coordinated over 1
h of heating. The product was filtered to remove AgCl and
purified by silica column chromatography in excellent yield
(60−70%). To the best of our knowledge, this represents the
first one-pot synthesis of a heterobifunctional photocleavable
cross-linker.
Photochemical characterization of CHO-Ru-N3 demon-

strates rapid photolysis in response to visible light (455 nm,
3−5 mW cm−2) and that 4-azidobutyronitrile is preferentially
exchanged upon light exposure (Figure 1a). This is observed
by UV−vis absorbance spectroscopy, wherein only one
isosbestic point accompanies photolysis, suggesting the
formation of a single photoproduct (Figure 1b). 1H NMR
confirmed the preferential exchange of the azide-bearing ligand
with a clear shift of the aliphatic peaks corresponding to
protons on 4-azidobutyronitrile, compared with a stable
aldehyde proton (Figure 1c). This observed preferential ligand
loss is confirmed by ESI-MS (Figure S3). The quantum yield
of ligand exchange for CHO-Ru-N3 at 455 nm is high,
determined to be 0.16 ± 0.04 by kinetic analysis of the
absorbance shift (Figure S4). Furthermore, the stability of

Scheme 1. One-Pot Synthesis of CHO-Ru-N3, the Photocleavable Crosslinker Used in This Work

Figure 1. Photolysis of CHO-Ru-N3 yields preferential exchange of nitrile-based ligand. (a) Scheme of photolysis of CHO-Ru-N3. (b) UV−vis
spectra of photolysis showing a single isosbestic point at 442 nm. (c) 1H NMR tracking photolysis of CHO-Ru-N3 shows clean exchange of
coordinated 4-azidobutyronitrile ligand (green five-point stars) for soluble ligand (purple seven-point stars), while the aldehyde-associated proton
(black arrow) remains stable. 1H NMR was performed in D2O, [CHO-Ru-N3] = 3.7 mM. Sample was mixed thoroughly throughout photolysis
(520 nm, 10 mW cm−2).
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CHO-Ru-N3 was excellent when stored over 3 days in dark
conditions both at room temperature and at 37 °C (Figure
S5). CHO-Ru-N3, being highly sensitive to visible light, was
found to rapidly photocleave when exposed to ambient light
conditions, with <50% intact CHO-Ru-N3 remaining after 4 h
(Figure S5).
Enthusiastic about CHO-Ru-N3’s ease of synthesis and

response to visible light, we identified NanoLuciferase (NLuc)
as a potential driver of BRET. Compared with conventional
firefly and renilla luciferase, NLuc is far smaller (19 kDa) and
brighter (100x more), both attractive features for BRET. To
fuse CHO-Ru-N3 site-specifically to NLuc (with an additional
optionally fused protein-of-interest, POI), we employed
sortase-mediated transpeptidation, whereby polyglycine probes
are C-terminally appended to proteins bearing the LPETG
sortase recognition sequence.36,37 To drive single-step protein
functionalization and purification, we implemented sortase-tag
enhanced protein ligation (STEPL, Scheme 2).16,38,39 Here,

NLuc is expressed as a fusion with the sortase recognition
sequence and enzyme, as well as a 6xHis tag. Following
immobilization on Ni-NTA, addition of a polyglycine probe in
addition to Ca2+ drives intramolecular sortagging and
concomitant release from the solid affinity matrix.
Toward creation of a sortaggable Ru-based probe, CHO-Ru-

N3 was conjugated with polypeptide H-GGGGK-NH2 via
reductive amination (see Supporting Information). Stabiliza-
tion with sodium cyanoborohydride permitted direct function-
alization of the lysine’s ε-amino group without reaction with
the N-terminus. The final product [H-GGGGK(Ru-N3)-NH2]
was purified by HPLC (Figures 2, S6−S8). Upon light
exposure, preferential exchange of the azide-bearing ligand was
also observed in H-GGGGK(Ru-N3)-NH2 (Figure 2a). Time-
course HPLC analysis demonstrated complete conversion of
H-GGGGK(Ru-N3)-NH2 to a singular photoproduct H-
GGGGK(Ru-H2O)-NH2 with the loss of the nitrile azide
ligand, highlighted by the absence of a peak appearing only in
the 220 nm channel, corresponding to the peptide alone
(Figure 2b). This was confirmed by ESI-MS pre- (expected
mass: 988.35/2 = 494.17) and post-photolysis (expected mass
[+Na+]: 918.28/2 = 459.14). Due to the +2 charge of CHO-
Ru-N3, mass hits for this compound appeared as m/2. ESI-MS
showed a mass shift of −34.51 corresponding to the loss of one
nitrile ligand in exchange for a water molecule (Figure 2c).

Following conjugation, H-GGGGK(Ru-N3)-NH2 was ap-
pended to NLuc via STEPL (see Supporting Information,
Figure S9). The product (denoted NLuc-Ru-N3) was
confirmed by ESI-MS with an exact mass hit at 21,500 Da.
After light exposure, the expected mass (21,407 Da) was
observed with a −93 Da mass shift accompanying photolytic
loss of the nitrile azide ligand (Figure 3a).
To assess the azide-reactivity and photolability of NLuc-Ru-

N3, the protein was reacted with a 20 kDa monomethyl-
poly(ethylene glycol) singly modified with a strained alkyne,
bicyclononyne (mPEG-BCN), via SPAAC. Reaction pro-
gression was monitored via sodium dodecyl sulfate−poly-
acrylamide gel electrophoresis (SDS-PAGE), whereby a mass
upshift accompanied C-terminal PEGylation (Figure 3b).
Following mild light exposure (455 nm, 5 mW cm−2, 0−60
s), the PEG was photolytically released, reflected by a
corresponding gel band downshift in SDS-PAGE.
Encouraged by the photosensitivity of NLuc-Ru-N3, and

towards demonstrating BRET-based delivery of a biologically
relevant cargo from a material system, we expressed and
modified an Epidermal Growth Factor (EGF)-NLuc-Ru-N3
fusion species (Figure S10−11). To aid in protein release
quantification, we fluorescently tagged the purified protein
with BD630/680-NHS ester.16 Fluorescent EGF-NLuc-Ru-N3
was covalently tethered throughout PEG-based hydrogels
formed through SPAAC; following incubation of EGF-NLuc-
Ru-N3 with PEG-tetraBCN for 3 h (final concentration of
EGF-NLuc = 0.1 mM), hydrogels were formed upon addition
of PEG-tetraazide. When kept in the dark, no background
protein release was observed in the gel supernatant over several
days both at room temperature and at 37 °C (Figure S12),
highlighting the stability of the Ru linkage. As expected, some

Scheme 2. STEPL Modification of Proteins on the C-
Terminus Figure 2. Synthesis and photolysis of H-GGGGK(Ru-N3)-NH2. (a)

Scheme showing reductive amination reaction between CHO-Ru-N3
and H-GGGGK-NH2, followed by photolysis. (b) HPLC traces of H-
GGGGK(Ru-N3)-NH2 show complete photolysis in situ after 45 min
of irradiation (455 nm, 5 mW cm−2). The final product has both
peptide and ruthenium signal, indicating that the aldehyde ligand
remains coordinated throughout photolysis. (c) ESI-MS of H-
GGGGK(Ru-N3)-NH2 before and after light exposure (455 nm, 5
mW cm−2, 5 min). A mass shift of −34.51 corresponds to the loss of
the nitrile ligand 4-azidobutryonitrile and addition of one coordinated
water molecule.
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protein release accompanied gel storage under ambient light
(Figure S13).
Owing to the strong spectral overlap between NLuc’s

luminescence and CHO-Ru-N3’s absorbance (Figure 4a-b), we
expected that EGF-NLuc could be similarly released photo-
chemically or via BRET. Protein release was quantified (via
supernatant fluorescence) for gels exposed to visible light (455
nm, 2 min, 10 mW cm−2) or NLuc’s furimazine (Fz) substrate
(5 and 7 μM). Each treatment yielded similar protein release
amounts, well above that of the dark control (p < 0.0001),
demonstrating BRET-based protein cargo release (Figure 4c,
Figure S14).
Finally, we sought to quantify BRET efficiency between the

NLuc and Ru linker via an SDS-PAGE fluorescent assay. After
conjugating a Cy5.5-DBCO fluorophore to EGF-NLuc-Ru-N3
via SPAAC, the EGF-NLuc-Ru-Cy5.5 species was exposed to
Fz (0−60 mol equiv). After electrophoretic separation, a loss
of Cy5.5 fluorescence corresponded to a BRET-based cleavage.
Studies indicated an overall BRET efficiency of ∼1% (Figure
S15). We anticipate that these values can be improved with
molecular redesign and expect this platform to be easily
transferable to other bioactive protein targets of interest in
therapeutic and regenerative medicine.

■ CONCLUSIONS
The facile synthesis of ruthenium polypyridyl cross-linkers
lends itself to the manufacturing of new, more complex
heterobifunctional cross-linkers. We report the first one-pot
synthesis of a heterobifunctional cross-linker useful for protein
conjugation and drug delivery, CHO-Ru-N3. This compound

undergoes preferential ligand exchange of the nitrile-N3 ligand,
observed by 1H NMR, ESI-MS, and UV−vis spectroscopy.
CHO-Ru-N3 was site-specifically conjugated to a polyglycine
peptide via reductive amination with a Lys residue and used to
modify a protein cargo NLuc via STEPL. Finally, we showed
that bioluminescent energy can be used as an alternative light
source for phototriggered protein cargo release out of hydrogel
materials when used in concert with ruthenium-based cross-
linkers. These data demonstrate the first use of BRET for
biomaterial modulation.
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